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We consider possible mechanisms for the observed secondary instability of travelling 
instability waves in liquid fluidized beds. The resonance conditions for quadratic 
nonlinear interaction are solved in the long-wave limit by perturbation theory. The 
estimated horizontal wavenumber of the resonant sideband agrees well with 
experiment and supports the proposed mechanism. 

1. Introduction 
In an earlier paper (Didwania & Homsy 1981), we reported the existence of several 

flow regimes in liquid fluidized beds. These include (in order of increasing u/umr) the 
wavy, turbulent and bubbly regimes. The wavy regime is complex and characterized 
by a complicated horizontal structure. In  this regime, we observed voidage fluctu- 
ations in the form of travelling waves. The organization of the wave motion depends 
upon the flow rate and the distance from the distributor section. For flow velocities 
close to that of minimum fluidization, the voidage fluctuations have a planar-wave 
form. As this wavetrain travels upwards, it  develops a transverse structure while the 
vertical wavenumber remains unaffected. With further increase in flow rate, both the 
horizontal and vertical wavelengths decrease and the voidage fluctuations become 
increasingly wavy. Figure 1 (taken from Didwania & Homsy 1981) shows this 
development. 

Several investigators (Jackson 1963 ; Pigford & Baron 1965 ; Anderson & Jackson 
1968; Homsy, El-Kaissy & Didwania 1980) analysed the transition from the state 
of uniform fluidization to the wavy regime, using a linear stability analysis. The 
analysis predicts an exponentially growing planar wavetrain and describes its 
experimentally measured growth and propagation properties in the early stages of 
growth. From their measurements, Homsy et al. (1980) deduced values of material 
constants appearing in the modelling equations. 

The mechanism by which the planar train develops the transverse structure or loses 
its stability is not presently understood. The linear theory predicts the voidage waves 
to maintain their planar character as they traverse the entire bed height, contrary 
to our experimental observations. This suggests that the planar wavetrain may itself 
be unstable, and a secondary instability mechanism leads to the appearance of waves 
with finite horizontal wavelength, and ultimately to the homogeneous t&bulent 
state. 

A plausible mechanism for this type of secondary instability can be examined in 
the framework of a weak nonlinear theory. Initially planar voidage waves grow 
exponentially in amplitude as they travel upward. Once their amplitude becomes 
appreciable, nonlinear effects can no longer be neglected. As a consequence of 
nonlinearity and weak dispersion, this primary planar mode is capable of resonant 
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FIGURE 1 .  A visualization of the wavy regime in a liquid fluidized bed 
(from Didwania & Homsy 1981). 

interaction, via its second harmonic, with a two-dimensional disturbance composed 
of a finite number of modes. Finally, the transverse structure appears as the planar 
wavetrain loses its stability to  this new disturbance packet. This mechanism is 
analogous to  the one responsible for the instability of a periodic progressive wavetrain 
on deep-water waves. I n  the later case, i t  is known that a disturbance capable of 
gaining energy from the primary wave motion consists of a pair of wave modes at 
sideband frequencies and wavenumbers fractionally different from those of the 
fundamental (Benjamin & Feir 1967). 

Thus, from the preceding discussion i t  is clear that, for such a secondary instability 
mechanism to exist, the observed horizontal wave structure must be capable of 
resonant interaction with the initially planar waves. Our objective in the present work 
is to establish the resonance conditions and examine if they are indeed satisfied. These 
conditions predict the horizontal wavenumber of the sideband modes, and this may 
be compared with experiment. In  $2 we discuss briefly the equations governing the 
two-dimensional small voidage disturbances to  the state of uniform fluidization and 
obtain the linear dispersion relationship. The resonance conditions and an expression 
for the horizontal wavenumber of the secondary instability are derived in $3. We 
compare the computed values of the horizontal wavenumber with our experimentally 
observed results in $4. 
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2. Dispersion relation 
The two-fluid modelling equations for fluidized beds have been discussed earlier 

by Homsy et al. (1980). Neglecting the fluid phase viscosity terms compared with 
those of the solid phase, we obtain the following set of dimensionless equations. 

Continuity : 

solid - a ( 1 - E )  + d(l-E)vk = 0. 
d 

Momentum : 

solid ( 1 - e ) [ 2 + v j 3 ]  = R ( ~ - c ) [ ~ + u , % ]  

+$R((% +(u,-v,)-) au, - (x a4 +(uj-vj)-)) .  (2.3) ax, ax, 

Here u,, v, are respectively fluid and solid phase velocities, pf andps are the respective 
phase pressures and E is the voidage. tP and g2 are respectively the bulk and shear 
viscosity of the solid phase. The coordinate axes are chosen such that (xl, x3)  are in 
the horizontal and vertical directions respectively. 

In  addition, the dimensionless parameters and material constants are 

(2.5) 

l 
R = (density ratio), Re = uo d p p f  (particle Reynolds number), 

Fr = 9 (particle Froude number), a ,̂ = a3J (drag function), 

P s  Pr 
d d2 

UO EPf 
(2.4) 

B, = 3 (virtual mass coefficient). 
€PI 

These equations possess a simple steady solution, known as the state of uniform 
fluidization. It is given dimensionlessly as 

uj = a,, v, = 0, E = €0,  

R e ( l - e O ) ( l - R ) F r  (2.6) provided that W O )  = R 
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As in the previous work, we assume an expression for the drag function of the form 

Re( 1 - E )  (1 - R )  Fr u - gl--n 

R Ut 
k3 = 

where n is the Richardson-Zaki exponent and ut is the terminal velocity of a single 
particle. The linearized equation governing the small voidage disturbances 6’ to this 
state of uniform fluidization can be readily obtained after some algebraic 
manipulation : 

(1  - R )  Fr ad - 

M 8%’ + ( ~ i ~ + ( l - ~ ~ ) )  8%’ - -~ c2 3%’ - 
Re (1  - eO) axXr axt at R axt axt €0 ax3 ax3 

Here E2 = P2+h2, M = - ( l -co)  a@zpf)I . 
E = € ”  

Solutions exist of the form 
E’ = 8 exp (at + i (k ,  x + k, 2)). 

Substitution of this form in (2.8) yields the following quadratic algebraic equation 
for cr in terms of k,, k, and other parameters: 

Aa2 + (Bik, + C ( k i  + k:) + D )  a+ (Eki  + Fk: + Cik,) = 0, (2.10) 

(1 - R )  Fr M 
E = -  

R ’  
D =  E2 C =  

Re (1  -eO) ’ Re0 
( o i 4 + ( 1 - E 0 ) ) ,  a= (1  - R) Fr( (n- 1) €0 + (1  - - ~ o ) )  (I  - €0)  

F=x-  4 €OR 

Roots of (2.10) give the dispersion relation. a is taken to be complex, a = a,+ia,; 
ar is the growth constant and ai the frequency. The wavevector k = (kz ,  k,) is real; 
k, and k, are respectively horizontal and vertical wavenumbers. 

The primary instability is characterized by those wavenumbers giving the max- 
imum growth constant. It is easy to show that aaJak, = 0 at k, = 0, and thus the 
primary instability is a planar wave (Anderson 6 Jackson 1968). For the primary 
mode, we also have %I = 0, (2.11) 

akz kz-0, kr-k: 

where k! is the experimentally observed vertical wavenumber of the planar wavetrain. 
The material constants (Ci4, M, E2)  appearing in (2.10) were earlier deduced from 
measured growth and propagation properties of these planar voidage waves. These 
voidage waves were also found to be dispersive, i.e. the frequency ai depended on 
the wavevector (El-Kaissy & Homsy 1976; Homsy et al. 1980). 
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3. Resonance conditions 
As noted earlier, our experimental observations indicate that the vertical wave- 

number of the planar wavetrain remains unaffected while a transverse structure 
characterized by a small horizontal wavenumber appears. These waves with transverse 
structure can be described as having a wavevector k, = ( & y ,  k:), where y is a small 
quantity. Owing to the growth of the planar waves to appreciable amplitude, the 
transverse mode k, may be able to gain energy from the primary wave (0, k:) via 
its second harmonic ( 0 , 2 k 3 .  This assumes that the essential nonlinearity is quadratic. 
For such a mechanism to be possible, the following resonance condition must hold: 

a,(y, k: )+g , ( - y ,k : )  = g , (O ,  2 k 3 .  (3.1) 

The resonance condition (3 .1)  has been discussed earlier in the context of weak 
quadratic nonlinearity by Phillips (1974). 

Since y is small, we obtain by Taylor-series expansion of (3.1) the following 
expression for the horizontal resonance wavenumber : 

An expression for ( pai/ aki)lkz ,,, kz k$ can be obtained from (2.10), after some 
algebraic manipulation. Differentiating (2.10) once with respect to k, we get 

ag aa 
akX akX 

2Aa-  +2Ck,g+( /3 ikZ+C(ki+ki )+D)-  +2Ek, = 0.  (3.3)  

Differentiating (3 .3)  with respect to kx we have 

Separating (3 .3)  and (3 .4)  into real and imaginary parts and using (2.11), we obtain 
as noted earlier, 

= 0. (3 .5a)  

In addition 

where ai and B, appearing in the above expression are evaluated at (0 ,k : ) .  
Substituting (3.5) in (3 .2)  yields an expression for y in terms of ~ ~ ( 0 ,  k;),  a,(O,  2 k 3 .  
cr,(O, k z ) ,  the material constants and operating parameters. 

4. Results and discussion 
Equation (3.2) was used to evaluate numerically the values of y. The material 

constants entering into the above equation were taken from Homsy et al. (1980). These 
material constants were used to evaluate a i (O,  2 k 3  from the dispersion relation and 
finally y ,  the horizontal wavelength. 

The numerical values of y for the experimental conditions of sets A and B, as 
reported in Didwania & Homsy (1981), always fell in the range 0 0 1 4 1 .  The 
experimentally observed values of y, obtained through visualizations and optical 
scanning, are in the range 0-04-0.07. This compares well with the predicted range, 
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considering the uncertainties involved in the estimation of material constants. Such 
an agreement strongly suggests the existence of the secondary instability mechanism 
that we have proposed here. A stability analysis of the weakly nonlinear planar 
wavetrain to  the disturbances admitted by the resonance conditions that we have 
suggested here remains to be investigated. 
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